

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724 PO Box 678 Croydon Vic 3136 Telephone: 9723 0744 Facsimile: 9723 0799

17th May 2022

Our Reference: 22275:NB1252

Winslow Constructors Pty Ltd 50 Barry Road CAMPBELLFIELD VIC 3061

Dear Sirs/Madams,

RE: LEVEL 1 EARTHWORKS INSPECTION AND TESTING SMITHS LANE – STAGE 17 (CLYDE NORTH)

Please find attached our Report No's 22275/R001 to 22275/R005 which relate to the field density testing that was conducted within the filled allotments at the above subdivision. The level 1 inspections and associated field density testing was performed in May 2022.

The inspections and testing of the earthworks was undertaken in general accordance with the Level 1 requirements of AS 3798 - Guidelines on Earthworks for Commercial and Residential Developments.

The site inspection and testing was performed by experienced geotechnicians from this office. Any areas that were deemed unsatisfactory were reworked and retested under their supervision. The testing was performed to the relevant Australian Standards and the accompanying test reports carry NATA endorsement. The attached compaction results, which were located randomly throughout the fill profile, are considered to be representative of the bulk fill materials that were placed across the reported allotments by Winslow Constructors during the aforementioned period. The approximate locations of the field density tests can be seen on the attached plan (Figure 1).

We are of the view that the bulk fill materials that have been placed across the reported allotments by Winslow Constructors during the aforementioned period can be considered as having been placed in a controlled manner to a minimum density ratio of 95% (standard compactive effort).

Please contact the undersigned if you require any additional information.

Civil Geotechnical Services

Nick Brock

FIGURE 1

CIVIL GEOTECH	HNICAL SERVICES					Jo Re	b No eport No	22275 22275/R001
6 - 8 Rose Avenue	, Croydon 3136					Da	ate Issued	16/05/2022
Client	WINSLOW CONSTRU	CTORS	PTY LTD (CA	AMPBELLFIE	ELD)	Te	ested by	SB
Project	SMITHS LANE - STAG	E 17				Da	ate tested	05/05/22
Location	CLYDE NORTH					Ci	hecked by	JHF
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time:	10:30
Test procedu	ıre AS 1289.2.1.1 & 5.8	3.1						
Test No			1	2	3	4	5	6
Location								
			REFER	REFER	REFER	REFER	REFER	REFER
			то	то	ТО	то	то	то
			FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1
Approximate o	depth below FSL							
Measurement	depth	тт	175	175	175	175	175	175
Field wet dens	sity	t∕m³	1.91	1.91	1.93	1.91	1.91	1.91
Field moisture	content	%	21.4	19.0	19.7	22.9	18.2	23.9
Test procedu	ıre AS 1289.5.7.1							
Test No			1	2	3	4	5	6
Compactive e	ffort				Star	ndard	1	
Oversize rock	retained on sieve	тт	19.0	19.0	19.0	19.0	19.0	19.0
Percent of ove	ersize material	wet	0	0	0	0	0	0
Peak Converte	ed Wet Density	t∕m³	1.96	1.93	1.96	1.95	1.96	1.90
Adjusted Peak	k Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Mois	sture Content	%	20.5	18.5	19.5	23.0	17.0	23.5
Maiat	ura Variation From		1.00/	0 50/	0.09/	0.00/	1 00/	0.00/
MOISt	ure variation From		1.0%	0.5%	0.0%	0.0%	1.0%	0.0%
density	and moisture content	s relate o	only to the so	il to the dept	h of test and	not to the fu	l depth of the	laver
Density Ratio	o (R _{HD})	%	97.5	99.5	98.5	98.0	97.5	100.5
								I
Material descr	ription							
No 1 - 6	Clay Fill							
							AVRL	JI HILF V1.10 MAR

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

0

CIVIL GEOTE	CHNICAL SERVICES					Jo Re	b No eport No	22275 22275/R002
6 - 8 Rose Aveni	ue, Croydon 3136					Da	ate Issued	17/05/2022
Client	WINSLOW CONSTRU	CTORS	PTY LTD (CA	AMPBELLFIE	ELD)	Te	ested by	SB
Project	SMITHS LANE - STAG	E 17				Da	ate tested	05/05/22
Location	CLYDE NORTH					Cl	hecked by	JHF
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time:	11:30
		<u></u>						
Test proced	dure AS 1289.2.1.1 & 5.	8.1						
Test No			7	8	9	10	11	12
Location								1
			REFER	REFER	REFER	REFER	REFER	REFER
			то	то	то	то	то	то
			FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1
Approximate	e depth below FSL							
Measureme	nt depth	mm	175	175	175	175	175	175
Field wet de	nsity	t/m³	1.91	1.91	1.91	1.90	1.91	1.95
Field moistu	re content	%	17.3	19.7	22.2	18.7	17.9	20.0
- -								
Test proced	dure AS 1289.5.7.1		7	0	0	10	44	40
Compositivo	offort		/	0	9 Stor	IU		12
	enon		10.0	10.0			10.0	10.0
Diversize roc	xoraiza matarial		19.0	19.0	19.0	19.0	19.0	19.0
Percent or o	versize material	#/m3	1.05	1.05	1.06	1.02	1.05	1.00
Adjusted Po	aled Wel Density	v////*	1.95	1.95	1.90	1.95	1.95	1.99
Aujusteu Pe	ak Conveneu wei Density	<u></u>	-	-	-	-	- 16.0	-
Optimum with		70	15.0	19.5	22.0	10.0	10.0	20.0
Moi	sture Variation From		2.5%	0.5%	0.0%	0.5%	2.0%	0.0%
Optin	num Moisture Content		wet	wet		wet	wet	
densi	ty and moisture ratio result	ts relate o	only to the so	il to the deptl	h of test and	not to the fu	ll depth of the	ayer
Density Rat	tio (R _{up})	%	97.5	98.0	97.5	99.0	98.0	98.0
Density Hut		70	57.0	30.0	57.0	00.0	50.0	50.0
Material des	cription							
INO 7 - 1	2 Glay Fill							
L								
							AVRL	OT HILF V1.10 MAR

Approved Signatory : Justin Fry

	CHNICAL SERVICES					Ja R	ob No eport No	22275 22275/R003
6 - 8 Rose Avenu	ie, Croydon 3136							17/05/2022
Client	WINSLOW CONSTRU		PTY LID (CA	AMPBELLFIE	LD)	10	ested by	SB
Project	SMITHS LANE - STAC	JE 17				D	ate tested	06/05/22
Location	CLYDE NORTH					C	hecked by	JHF
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time:	09:00
Test proced	dure AS 1289.2.1.1 & 5	.8.1					-	
Test No			13	14	15	16	17	18
Location								
			REFER	REFER	REFER	REFER	REFER	REFER
			то	то	то	то	то	то
			FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1
Annroximate	denth helow ESI							
Measuremer	nt depth	mm	175	175	175	175	175	175
Field wet der	nsitv	t/m ³	1 90	1 90	1 90	1 91	1 91	1.90
Field moistu	re content	<u> </u>	27.2	23.6	26.1	26.5	24.2	28.4
Test proced	dure AS 1289.5.7.1		•					
Test No			13	14	15	16	17	18
Compactive	effort				Star	Idard		
Oversize roc	k retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of or	versize material	wet	0	0	0	0	0	0
Peak Conve	rted Wet Density	t∕m³	1.95	1.92	1.94	1.96	1.92	1.95
Adjusted Pea	ak Converted Wet Densit	y t/m³	-	-	-	-	-	-
Optimum Mo	oisture Content	%	25.0	21.5	23.5	24.5	22.5	26.5
Mois	sture Variation From		2.5%	2.0%	2.5%	2.0%	2.0%	2.0%
Optim	num Moisture Content		wet	wet	wet	wet	wet	wet
densit	ty and moisture ratio resu	Its relate (only to the so	il to the deptl	h of test and	not to the fu	II depth of the	ayer
Density Rat	io (R _{HD})	%	97.5	98.5	97.5	97.0	99.5	97.5
Material des	cription							
No 13 - 1	18 Clay Fill							
L								
							Δ\/DI	OT HILE VI 10 MAP
							,L	- · · · · · · · · · · · · · · · · · · ·

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

6 - 8 Kose Avenue, Croyoton 3136 Date Issued 1100 Client WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD) Tested by SB Project SMITHS LANE - STAGE 17 Date tested 09/05/. Location CLYDE NORTH Checked by JHF Feeture EARTHWORKS Layer thickness 200 mm Time: 13:30 Test procedure AS 1289.2.1.1 & 5.8.1 Test No 19 20 21 22 23 24 Location REFER REFER REFER REFER REFER TO TO TO TO TO TO FIGURE 1 FIGUR 1 FIGUR 1 FIGUR 1 FIGUR 1 FIGUR 1	VIL GEOTECH	NICAL SERVICES					Ji R	ob No eport No	22275 22275/R0	04
Client WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD) Tested by SB Project SMITHS LANE - STAGE 17 Date tested 09/05/. Checked by JHF Location CLYDE NORTH Checked by JHF SMITHS LANE - STAGE 17 Checked by JHF Test procedure AS 1289.2.1.1 & 5.8.1 Test procedure AS 1289.2.1.1 & 5.8.1 Test No 19 20 21 22 23 24 Location REFER REFER REFER REFER REFER REFER REFER REFER To To To To To To FIGURE 1 FIGURE	- 8 Rose Avenue,	Croydon 3136					D	ate Issued	17/05/202	2
Project Location SMITHS LANE - STAGE 17 CLYDE NORTH Date tested (90/05) Checked by Op/05) JHF Feature EARTHWORKS Layer thickness 200 mm Time: 13:30 Test procedure AS 1289.2.1.1 & 5.8.1 19 20 21 22 23 24 Location REFER To FigURE 1 REFER TO FIGURE 1 <	Client	WINSLOW CONSTRUC	TORS	PTY LTD (CA	MPBELLFIE	ELD)	Т	ested by	SB	
Location CLYDE NORTH Checked by JHF Feature EARTHWORKS Layer thickness 200 mm Time: 13:30 Test procedure AS 1289.2.1.1 & 5.8.1 Test NO 19 20 21 22 23 24 Location REFER REF	Project	SMITHS LANE - STAGE	E 17				D	ate tested	09/05/22	
Feature EARTHWORKS Layer thickness 200 mm Time: 13:30 Test procedure AS 1289.2.1.1 & 5.8.1 Test procedure AS 1289.2.1.1 & 5.8.1 Test No 19 20 21 22 23 24 Location REFER TO	Location	CLYDE NORTH					С	hecked by	JHF	
Feature EARTHWORKS Layer thickness 20 mm Time: 13:00 Test procedure AS 1289.2.1.1 & 5.8.1 Test procedure AS 1289.2.1.1 & 5.8.1 Test No 20 21 22 23 24 Location REFER										
Feature EARTHWORKS Layer thickness 200 mm Time: 13:30 Test procedure AS 1289.2.1.1 & 5.8.1 Test procedure AS 1289.2.1.1 & 5.8.1 Test No 19 20 21 22 23 24 Location REFER FIGURE 1										
Test procedure AS 1289.2.1.1 & 5.8.1 Test No 19 20 21 22 23 24 Location REFER TO	Feature	EARTHWORKS		Lay	er thickness	200	mm	Time:	13:30	
Test procedure AS 1289.2.1.1 & 5.8.1 Test No 19 20 21 22 23 24 Location REFER FO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER FO FIGURE 1 REFER FIGURE 1										
Test procedure AS 1289.2.1.1 & 5.8.1 Test No 19 20 21 22 23 24 Location REFER										
Test procedure AS 1289.2.1.1 & 5.8.1 Test No 19 20 21 22 23 24 Location REFER FIGURE 1 REFER TO FIGURE 1 REFER FO REFER TO FIGURE 1 REFER FO REFER TO FIGURE 1 REFER FO REFER TO FIGURE 1 REFER FO REFER TO FIGURE 1 REFER TO										
Test No 19 20 21 22 23 24 Location REFER TO FIGURE 1 REFER TO FIGURE 1 REFER FIGURE 1 REFER TO FIGURE 1 REFER TO TO FIGURE 1 REFER TO TO FIGURE 1 REFER TO TO FIGURE 1 REFER TO TO TO TO REFER TO TO TO TO REFER TO TO TO TO REFER TO TO TO TO REFER TO TO TO REFER TO TO TO REFER TO TO TO REFER TO TO TO REFER TO TO REFER TO TO REFER TO TO TO REFER TO TO REFER TO TO REFER TO TO REFER TO TO REFER TO TO REFER TO TO REFER TO TO REFER TO REFER TO TO REFER TO REFER <b< td=""><td>Test procedu</td><td>ro 1980211858</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></b<>	Test procedu	ro 1980211858	1							
Test NoTSLoL1L2L5L5L5LocationREFER TO FIGURE 1REFER TO FIGURE 1REFER FIGURE 1REFER FIGUR 1REFER <br< td=""><td>Test No</td><td>IC AO 1203.2.1.1 & 0.0</td><td>. /</td><td>19</td><td>20</td><td>21</td><td>22</td><td>23</td><td>24</td><td></td></br<>	Test No	IC AO 1203.2.1.1 & 0.0	. /	19	20	21	22	23	24	
Location REFER TO FIGURE 1 REFER TO TO FIGURE 1 REFER TO TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO TO REFER TO TO REFER TO TO REFER TO TO REFER TO TO REFER TO TO REFER TO Ref Refer <br< td=""><td>l coction</td><td></td><td></td><td>15</td><td>20</td><td>21</td><td></td><td>20</td><td>27</td><td></td></br<>	l coction			15	20	21		20	27	
REPER TO FIGURE 1REPER TO FIGURE 1REPER TO TO FIGURE 1REPER TO FIGURE 1REPER TO FIGURE 1REPER TO FIGURE 1REPER TO TO FIGURE 1Repercenter TO FIGURE 1Repercenter TO TO TORepercenter TO TO TORepercenter TO TO TORepercenter TO TO TO TO TO TO TORepercenter TO TO TO TORepercenter TO TO TO TORepercenter TO TO TORepercenter TO TO TORepercenter TO TO TORepercenter TO TORepercenter TO TORepercenter TO TORepercenter 	Location			DEEED	DEEED					
IO IIO IIIO <thiiiiiiiiiiiiiiiiiiiiiiiiiiiii< td=""><td></td><td></td><td></td><td>REFER</td><td>REFER</td><td>REFER</td><td>REFER</td><td>REFER</td><td></td><td></td></thiiiiiiiiiiiiiiiiiiiiiiiiiiiii<>				REFER	REFER	REFER	REFER	REFER		
Approximate depth below FSL Measurement depth mm 175										
Approximate depth below FSL Image: constraint of the solution the sol				FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE	1
Approximate depth below FSL Image: constraint of the second										
Approximate depth below FSL Image: constraint of the solution of the layer Measurement depth mm 175										
Approximate depth below FSL Image: constraint of the low formation of the layer Measurement depth mm 175										
Measurement depth mm 175	Approximate d	epth below FSL								
Field wet density t/m^3 1.91 1.90 1.90 1.91 1.89 1.8 Field moisture content % 25.8 28.2 26.8 28.6 28.5 27. Test procedure AS 1289.5.7.1 Test No 19 20 21 22 23 24 Compactive effort Oversize rock retained on sieve mm 19.0	Measurement	depth	mm	175	175	175	175	175	175	
Field moisture content % 25.8 28.2 26.8 28.6 28.5 27. Test procedure AS 1289.5.7.1 Test No 19 20 21 22 23 24 Compactive effort Standard Standard Standard Oversize rock retained on sieve mm 19.0	Field wet dens	ity	t∕m³	1.91	1.90	1.90	1.91	1.89	1.89	
Test procedure AS 1289.5.7.1 Test No 19 20 21 22 23 24 Compactive effort Standard Oversize rock retained on sieve mm 19.0 <td>Field moisture</td> <td>content</td> <td>%</td> <td>25.8</td> <td>28.2</td> <td>26.8</td> <td>28.6</td> <td>28.5</td> <td>27.5</td> <td></td>	Field moisture	content	%	25.8	28.2	26.8	28.6	28.5	27.5	
Test procedure AS 1289.5.7.1 Test No 19 20 21 22 23 24 Compactive effort Standard Oversize rock retained on sieve mm 19.0 <td></td>										
Test No192021222324Compactive effortStandardOversize rock retained on sievemm19.019.019.019.019.019.019.0Percent of oversize materialwet000000Peak Converted Wet Densityt/m³1.951.901.961.971.911.9Adjusted Peak Converted Wet Densityt/m³Optimum Moisture Content%24.026.024.526.527.025.Moisture Variation From Optimum Moisture Content1.5% wet2.5% wet2.0% wet2.0% wet1.5% wet2.0Moisture Variation From Optimum Moisture Content1.5% wet2.5% wet2.0% wet99.099.0Density Ratio (R_HD)%98.0100.097.097.099.099.0	Test procedu	re AS 1289.5.7.1		10		<u> </u>				-
Compactive effortStandardOversize rock retained on sievemm19.019.019.019.019.019.019.0Percent of oversize materialwet0000000Peak Converted Wet Densityt/m³1.951.901.961.971.911.9Adjusted Peak Converted Wet Densityt/m³Optimum Moisture Content%24.026.024.526.527.025.Moisture Variation From Optimum Moisture Content1.5% wet2.5% wet2.0% wet1.5% wet2.0Moisture Variation From Optimum Moisture Content1.5% wet2.5% wet2.0% wet1.5% wet2.0Density Ratio (R HD)%98.0100.097.097.099.099.0	Test No			19	20	21	22	23	24	
Oversize rock retained on sievemm19.019	Compactive ef	fort			10.0	Star	idard			
Percent of oversize materialwet0000000Peak Converted Wet Density t/m^3 1.951.901.961.971.911.9Adjusted Peak Converted Wet Density t/m^3 Optimum Moisture Content%24.026.024.526.527.025.Moisture Variation From Optimum Moisture Content1.5% wet2.5% wet2.0% wet2.0% wet1.5% wet2.0Moisture Variation From Optimum Moisture Content1.5% wet2.5% wet2.0% wet2.0% wet1.5% wet2.0Density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layerDensity Ratio (R _{HD})%98.0100.097.097.099.099.0	Oversize rock	retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0	
Peak Converted Wet Density t/m^3 1.951.901.961.971.911.911.91Adjusted Peak Converted Wet Density t/m^3 Optimum Moisture Content%24.026.024.526.527.025.Moisture Variation From Optimum Moisture Content1.5% wet2.5% wet2.0% wet2.0% wet1.5% wet2.0Moisture Variation From Optimum Moisture Content1.5% wet2.5% wet2.0% wet2.0% wet1.5% wet2.0Density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer100.097.099.099.0Density Ratio (R_{HD})%98.0100.097.097.099.099.0	Percent of ove	rsize material	wet	0	0	0	0	0	0	
Adjusted Peak Converted Wet Density t/m^3 <th< td=""><td>Peak Converte</td><td>d Wet Density</td><td>t/m³</td><td>1.95</td><td>1.90</td><td>1.96</td><td>1.97</td><td>1.91</td><td>1.91</td><td></td></th<>	Peak Converte	d Wet Density	t/m ³	1.95	1.90	1.96	1.97	1.91	1.91	
Optimum Moisture Content%24.026.024.526.527.025.Moisture Variation From Optimum Moisture Content 1.5% wet 2.5% wet 2.0% wet 2.0% wet 1.5% wet 2.0% wet <td< td=""><td>Adjusted Peak</td><td>Converted Wet Density</td><td>t/m³</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></td<>	Adjusted Peak	Converted Wet Density	t/m³	-	-	-	-	-	-	
Moisture Variation From Optimum Moisture Content1.5% wet2.5% wet2.0% wet2.0% wet1.5% wet2.0 wetdensity and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layerDensity Ratio (R _{HD})%98.0100.097.097.099.099.	Optimum Mois	ture Content	%	24.0	26.0	24.5	26.5	27.0	25.5	
Moisture Variation From Optimum Moisture Content1.5% wet2.5% wet2.0% wet2.0% wet1.5% wet2.0 wetdensity and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layerDensity Ratio (R _{HD})%98.0100.097.097.099.099.0										
Optimum Moisture Content wet wet <td< td=""><td>Moist</td><td>re Variation From</td><td></td><td>1.5%</td><td>2.5%</td><td>2.0%</td><td>2.0%</td><td>1.5%</td><td>2.0%</td><td>٦</td></td<>	Moist	re Variation From		1.5%	2.5%	2.0%	2.0%	1.5%	2.0%	٦
density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer Density Ratio (R _{HD}) % 98.0 100.0 97.0 97.0 99.0 99.0	Ontimu	m Moisture Content		wet	wet	wet	wet	wet	wet	
Density Ratio (R_{HD}) %98.0100.097.097.099.099.	density	and moisture ratio results	rolato (only to the so	il to the dept	n of test and	not to the fu	ll depth of the		
Density Ratio (R_{HD}) % 98.0 100.0 97.0 97.0 99.0 99.										_
	Density Ratio	(R _{HD})	%	98.0	100.0	97.0	97.0	99.0	99.0	
Material description	Material descri	ption								
		•								٦
No 19 - 24 Clay Fill	No 19 - 24	Clay Fill								
										14.0.4

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

CIVIL GEOTECHNICAL SERVICES 6 - 8 Rose Avenue, Croydon 3136				Ja R D	ob No eport No ate Issued	22275 22275/R005 16/05/2022
Client WINSLOW CONSTRUCTOR Project SMITHS LANE - STAGE 17	T D	ested by ate tested	SB 10/05/22			
Location CLYDE NORTH				C	пескеа ру	JHF
Feature EARTHWORKS	Lay	ver thickness	200	mm	Time:	12:00
Test procedure AS 1289.2.1.1 & 5.8.1						
Test No	25	26	27	28	29	30
Location	REFER TO FIGURE 1	REFER TO FIGURE 1				
American (a start to be to be EQ)						
Approximate depth below FSL	m 175	175	175	175	175	175
Measurement depth mi	ni 175	175	175	175	175	175
Field moisture content		1.90	1.09	1.89	1.90	1.90
Test procedure AS 1289.5.7.1 Test No	25	26	27	28	29	30
Compactive effort	40.0	40.0	Star	idard	40.0	40.0
Oversize rock retained on sieve mi	m 19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material W	et = 0	0	0	0	0	0
Peak Converted Wet Density t/n	n ^s 1.90	1.92	1.96	1.96	1.92	1.91
Adjusted Peak Converted Wet Density t/n	n ³ -	-	-	-	-	-
Optimum Moisture Content 9	6 21.5	19.0	20.5	17.5	19.0	19.0
Moisture Variation From	1.5%	2.0%	1.0%	2.5%	2.0%	1.5%
Optimum Moisture Content	wet	wet	wet	wet	wet	wet
density and moisture ratio results relat	te only to the so	oil to the dept	h of test and	not to the fu	Il depth of the	e layer
Density Ratio(R _{HD}) %	6 100.0	99.0	96.5	96.5	98.5	100.0
<i>Material description</i> No 25 - 30 Clay Fill						
					AVRL	OT HILF V1.10 MAR 1

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

0